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SUMMARY

In this paper, the domain decomposition method (DDM) and the general boundary element method
(GBEM) are applied to solve the laminar viscous �ow in a driven square cavity, governed by the exact
Navier–Stokes equations. The convergent numerical results at high Reynolds number Re=7500 are
obtained. We �nd that the DDM can considerably improve the e�ciency of the GBEM, and that the
combination of the domain decomposition techniques and the parallel computation can further greatly
improve the e�ciency of the GBEM. This veri�es the great potential of the GBEM for strongly non-
linear problems in science and engineering. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

To overcome the limitations of the traditional boundary element method (BEM) and widen its
application in science and engineering, Liao and his co-authors [1–7] proposed the so-called
general boundary element method (GBEM). The GBEM has a solid mathematical base, i.e.
the homotopy analysis method [8–12]. In the past few years, the GBEM has been proved to
be a powerful numerical technique for non-linear di�erential equations, especially for strongly
non-linear problems.
However, domain integral is a challenge for the GBEM. It is well known that for non-linear

problems the BEM loses its boundary-only merits due to the appearance of domain integrals,
and thus is numerically ine�cient in comparison with domain schemes such as the �nite
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di�erence method (FDM) and the �nite element method (FEM). Especially, it is unknown
if the GBEM with domain integrals are e�cient enough for three-dimensional non-linear
problems.
To conquer the limitation of numerical ine�ciency due to domain integrals, Zhao and

Liao [7] successfully applied the parallel computation to the GBEM. For laminar viscous �ows
in a driven square cavity governed by the exact Navier–Stokes equations, they obtained the
convergent numerical results at the high Reynolds number Re=7500 by a high-performance
parallel computer. This is the �rst time, to the best of our knowledge, to present convergent
results at such a high Reynolds number by means of the BEM, which veri�es the validity and
great potential of the GBEM for strongly non-linear problems. However, when Re=7500, a
lot of CPU time is needed. Thus, it is necessary to further develop more e�cient techniques
for domain integrals in the GBEM.
Domain decomposition methods are developed long before the term ‘domain decomposition’

came into use [13, 14]. The popularity of the DDM [15–17] is motivated primarily either
by the natural domain structure of the problems, such as non-homogeneous body and long
body, or by the need to parallelize algorithms for large problems. Recently, Hribersek and
Skeret [18] applied the DDM to the boundary element method of the Navier–Stokes equations.
Kamiya et al. [19] proposed an algorithm for the parallel boundary element computation of
the domain decomposed problem. Popov and Power [20, 21], Power and Mingo [22] applied
the DDM to improve the accuracy of dual reciprocity method (DRM) and it turned out to be
more e�cient than the ordinary BEM.
In this paper, we apply the DDM to improve the numerical e�ciency of the GBEM. By

means of the DDM, the global domain is divided into several subdomains, and in each of
them the full integral representation formula is applied. At the common interface between
adjacent subregions, the corresponding full matching conditions, considering the compatibility
and equilibrium conditions, are enforced. Each integral is restricted in the subdomain. As
mentioned by Zhao and Liao [7], more than 95% CPU time of the GBEM approach is
spent in domain integrals. Hence, the employment of the DDM can considerably improve the
numerical e�ciency of the GBEM.
Domain decomposition methods are naturally suitable for the parallel computation

[19, 23–25]. To make our formulation numerically more e�cient, we combine the DDM with
the parallel computation. In this way, the e�ciency of the GBEM is further improved greatly.
Our numerical experiments show that, employing equal number of processors, the domain
decomposition parallel computation is much more e�cient than the pure parallel computation
mentioned in Reference [7].

2. GENERAL BOUNDARY ELEMENT METHOD

Consider the two-dimensional steady viscous �ow of an incompressible Newtonian �uid, gov-
erned in terms of the streamfunction  and the vorticity ! by

∇2!= Re
(
@ 
@y

@!
@x
− @ 

@x
@!
@y

)
(1)

∇2 +!=0 (2)
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subject to the boundary conditions

 =  b on � (3)

@ 
@n
=
(
@ 
@n

)
b

on � (4)

where Re is the Reynolds number and � denotes the boundary of the global domain.
Using the homotopy analysis method, Liao [1] replaced the original non-linear equations

(1)–(4) by a series of linear sub-problems, governed by

∇2 �!k(x; y) = Sk−1(x; y) (5)

∇2 � k(x; y) + �!k(x; y) = 0 (6)

subject to the related boundary conditions

� k(x; y) = (1− �k) b on � (7)

@ � k(x; y)
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= (1− �k)
(
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where

Sk−1(x; y)=Re
k−1∑
n=0
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(9)

and

�k =

{
0 when k61

1 when k ¿ 1
(10)

Here �!k(x; y) and � k(x; y) are de�ned by

�!k(x; y) =!k − (�k − 1)!k−1 (11)

� k(x; y) =  k − (�k − 1) k−1 (12)

Equations (5) and (6) with boundary conditions (7) and (8) can be solved by the traditional
BEM. As soon as �!k(x; y), � k(x; y) are known, we have via Equations (11) and (12) that

!k = �!k(x; y) + (�k − 1)!k−1 (13)

 k = � k(x; y) + (�k − 1) k−1 (14)
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The mth-order iterative formulations are as follows:

!i+1
0 (x; y)←!i

0(x; y) +
m∑

k=1
!i

k(x; y)p
k (15)

 i+1
0 (x; y)←  i

0(x; y) +
m∑

k=1
 i
k (x; y)p

k (16)

where the superscript i denotes the number of iteration and p is an embedding variable of
homotopy. For details, please refer to Reference [1].

3. DOMAIN DECOMPOSITION METHOD

By means of the DDM, the whole domain � is decomposed into M subdomains �1;�2; : : : ;�M .
In each subdomain, a full integral representation formula is applied. In the subdomain �I

(I =1; 2; : : : ; M), the boundary integral equations of Equations (5)–(8) can be written as
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where the superscript I denotes the subdomain �I , �I the boundary of �I , respectively. The
parameter a(�) is a geometric factor depending on the location of �:

a(�)=



1 if � ∈ �I

0 if � ∈ �c
I

�=2� if � ∈ �I
(19)

where �c
I denotes the exterior of the domain �I , excluding its boundary �I , � is the angle

formed between the tangents to the boundary at point �, approaching it from each side. For
points at which the boundary is di�erentiable, �=�, G! and G are fundamental solutions.
According to Reference [26], we have

G! =− 12� ln r (20)

F =
r2

8�
(ln r − 1) (21)
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Let �VI denote the interface of the subdomain �I with other subdomains, and �RI the re-
mainder boundary of the subdomain �I , i.e. �RI +�

V
I =�I . Obviously, �

V
I is a virtual boundary

inner the global domain, on which the values of �!I
k , @ �!

I
k=@n, � 

I
k and @ � I

k =@n are unknown.
Note that, �RI is a real boundary, on which both  I

k and @ I
k =@n are known, subject to the

boundary conditions (7) and (8). According to Equation (19), if � ∈ �c
I then a(�)=0. Thus,

for points in the exterior of the domain �I , excluding the boundary �I , we have by substituting
boundary conditions (7) and (8) into Equations (17) and (18) that∮
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After discretizing Equations (22) and (23) by the boundary elements, the following matrix
system is obtained:

GI
(1)w

I
n +H

I
(1)w

I = cI(1) (24)

FI
(2)w

I
n + E

I
(2)w

I +GI
(2)y

I
n +H

I
(2)y

I = cI(2) (25)

where GI
(1), H

I
(1) denote the coe�cient matrix determined from the �rst and the second integral

of the left-hand side of Equation (22), FI
(2), E

I
(2), G

I
(2), and H

I
(2) denote the coe�cient matrix

determined from the �rst, the second, the third, and the fourth integral of the left-hand side
of Equation (23), wI

n and wI denote the unknown vector of @ �!I
k=@n and �!I

k on the boundary
�I of the subdomain �I , yIn and yI denote the unknown vector of @ � I

k =@n and � I
k on the

boundary �VI of the subdomain �I , and cI(1) and c
I
(2) denote the known vector determined

from the right-hand side of Equations (22) and (23), respectively.
We can write the set of Equations (24) and (25) as

[
GI
(1) HI

(1) 0 0

FI
(2) EI
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(2) HI

(2)

]
wI
n
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 =

[
cI(1)
cI(2)

]
(26)

i.e. in the subdomain �I , we have a system of algebraic equations of the form

BIxI = cI ; I =1; 2; : : : ; M (27)

where the superscript I denotes the subdomain �I , M is the number of subdomains, and

BI =

[
GI
(1) HI

(1) 0 0

FI
(2) EI

(2) GI
(2) HI

(2)

]
(28)
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is a matrix which depends only on the geometry of the boundary.

xI =[wI
n w

I yIn y
I ]T (29)

is a vector of the unknowns on the boundary of the subdomains �I , and

cI =[cI(1) c
I
(2)]

T (30)

is a vector of known values.
On the common interface �VIJ of the subdomains �I and �J , we use the matching conditions:

(w)I�VIJ = (w)
J
�VIJ

(31)

(y)I�VIJ = (y)
J
�VIJ

(32)

(wn)I�VIJ =−(wn)
J
�VIJ

(33)

(yn)I�VIJ =−(yn)
J
�VIJ

(34)

Each of the M local matrix systems given by Equation (27) can be assembled with its
neighbouring systems according to the matching conditions given by Equations (31)–(34).
The assembled global systems can be written in the following form:

Bx= c (35)

where B is an assembled spare global coe�cient matrix, x is an assembled global unknown
vector in the boundaries of each subdomain, and c is an assembled global known vector.
Solving the linear equation (35), we get �!k , @ �!k=@n, � k , and @ � k=@n on the boundary of
each subdomain. One of the advantages of the GBEM is that the global coe�cient matrix
B maintains the same in solving �!k , @ �!k=@n, � k , and @ � k=@n for any k¿1 in each iteration.
Therefore, instead of solving such a spare linear system by direct or iterative solvers, we
need only invert this matrix by the LU decomposition one time, and the inverse matrix can
be stored and used again and again.
Once �!I

k , @ �!
I
k=@n, � 

I
k , and @ � I

k =@n on the boundary �I of the subdomain �I are known,
using Equations (17)–(19), we can obtain �!I

k , and � I
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The �nal solutions are obtained using (13)–(16).

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:185–199



SOLVING HIGH REYNOLDS-NUMBER VISCOUS FLOWS 191

4. PARALLEL COMPUTING

As mentioned before, domain decomposition methods are naturally suitable for parallel com-
putation. Actually, many domain decomposition methods are mainly designed for parallel
implementation, especially in the �nite element method. If each subdomain is assigned a pro-
cessor, it is very convenient to parallelize our approach. This parallelization strategy is often
employed in domain decomposition parallel computation [27].
In this paper, to make the GBEM numerically more e�cient, we combine the DDM with the

data decomposition parallelization strategy [28] in each subdomain. Instead of assigning only
one processor to each subdomain in the pure domain decomposition parallel computation, we
divide the total processors into M groups, and assign a group of processors to each subdomain.
In each subdomain, data decomposition parallelization strategy is employed to calculate the
domain integrals over this subdomains. The data decomposition parallelization strategy has
been proved to be e�cient for the GBEM by Zhao and Liao [7]. The di�erence lies in that
our data decomposition schemes are executed within the subdomain while Zhao and Liao’s
[7] strategies are implemented in the global domain.
The message between processors is conveyed by message passing interface (MPI) [29]. Our

parallel codes are implemented on a high-performance parallel computer SGI Onyx 3800, a
supercomputer containing 64 processors (500MHz) with 32GB shared memory.

5. NUMERICAL EXAMPLE

For example, let us consider the viscous �ow in a square cavity. The geometry and the corre-
sponding boundary conditions are as shown in Figure 1. For convenience, the global domain
is decomposed into four, nine, and sixteen uniform subdomains, respectively, as illustrated in
Figure 1. The parallelization strategy combining domain decomposition and data decomposi-
tion is illustrated in Figure 2. Each subdomain has the same number of boundary elements
and the same number of processors. We use uniform rectangle numerical grids. Like Liao
[1], linear boundary elements are used. At the corners of each subdomain, a so-called ‘double
node approach’, that is, using two nodes close to each other at the corner, one belonging
to each side, is applied. Throughout this paper, we use the solution at Re=0 as our initial
approximation. The criterion for convergence is de�ned by �= |(fm+1−fm)=fm|¡ 5× 10−3.
In this paper, the speedup is de�ned as follows:

speedup=
t0
t1

(38)

where t0 denotes the time needed in a single domain without parallel computation, and t1
denotes the time needed with domain decomposition or parallel computation. From the physical
view it denotes the speedup e�ect of our domain decomposition method, or the parallel
computation, or the combination between these two methods.
To demonstrate the speedup e�ect of the domain decomposition method in the GBEM, we

�rstly implement our code in a personal computer, with only one processor of Intel Pentium
4 (1.5GHz). The speedup given by di�erent number of subdomains with di�erent mesh is
shown in Table I. In the case of 16 subdomains, it is obvious that the speedup is higher if
�ner mesh is used. This is mainly because when �ner mesh is used, relatively more CPU
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Figure 1. Geometry of the driven cavity viscous �ow with boundary
conditions and domain decompositions.

Figure 2. Parallel strategy combining domain decomposition and data decomposition.
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Table I. The speedup given by di�erent number of subdomains.

Mesh Four subdomains Nine subdomains Sixteen subdomains

48× 48 3.74 8.60 10.12
72× 72 3.76 8.19 12.05
96× 96 3.88 8.72 13.15
120× 120 3.83 8.24 13.74

Table II. The number of iteration and corresponding CPU time at di�erent Reynolds
number by global domain (1D), four subdomains (4D), nine subdomains (9D),

and 16 subdomains (16D) on personal computer.

Number of iteration Relative CPU time

Re p 1D 4D 9D 16D 1D 4D 9D 16D

100 0.5 20 19 19 20 1 0.251 0.115 0.0815
400 0.2 73 76 81 74 3.62 0.976 0.467 0.285
1000 0.05 259 259 245 261 12.8 3.31 1.40 0.988
3200 0.01 1311 1403 1219 1471 154.6 43.3 17.5 12.6
5000 0.005 \ 3039 3121 3081 \ 93.7 44.7 26.4
7500 0.002 \ \ 7111 6931 \ \ 101.8 59.5

time are spent in domain integrals. The accurate enough solutions for Re=100, 400, and 1000
are obtained by 96× 96 mesh grid, and for Re=3200, 5000, and 7500 by 120× 120 mesh
grid. The iterative times and corresponding relative CPU time to get convergent solutions by
a personal computer are listed in Table II. Here we take the CPU time consumption for the
solution at Re=100 on 96× 96 mesh grid as unity. It is clear that by means of the DDM,
the total CPU time is greatly decreased while the number of iteration maintains nearly the
same, as shown in Table II.
It should be pointed out that employing the GBEM and the domain decomposition method,

we can get the convergent solutions even for the Reynolds number Re=10000. As mentioned
by Zhao and Liao [7], using the GBEM, we can always �nd a small enough p to ensure
that the iteration is convergent at high Reynolds numbers. Therefore, our numerical method is
valid in the whole range of Reynolds numbers. However, without the DDM, it is numerically
ine�cient to obtain the convergent solutions at the high Reynolds numbers by a personal
computer. The employment of the domain decomposition technology can greatly improve the
e�ciency of the GBEM and thereby makes it possible for us to get accurate solutions at
the high Reynolds number Re=5000 and 7500 by a personal computer. This veri�es the
great potential of the approached general boundary element method as an e�cient numerical
method.
Since both the DDM and the parallel computation can improve the e�ciency of the GBEM,

it is necessary to compare their speedup with equal number of processors and subdomains.
Zhao and Liao [7] implemented their GBEM code of parallel computation by the global
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Figure 3. Comparison between the domain decomposition method (without the paral-
lel computation) and Zhao and Liao’s [7] parallel computation by the global domain

on SGI Onyx 3800 with mesh 120× 120.

Figure 4. Speedup of the parallel computation by means of the global domain
and the domain decomposition on SGI Onyx 3800 with mesh 120× 120.
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Figure 5. Pro�les of velocity u at x= 1
2 for Re=100, 1000, 5000, and 7500.

Solid line: current result; circle: results given by Ghia et al. [30].

domain on SGI Onyx 3800. Their numerical speedup is compared with that given by the
DDM on 120× 120 mesh grid without the parallel computation, as shown in Figure 3. It
seems that the speedup of the parallel computation is only slightly better than that of the
DDM, if the number of processors is equal to the number of the subdomains. Therefore, the
DDM is a good alternative to the parallel computation for improving the numerical e�ciency
of the GBEM.
Certainly, the combination of the DDM with the parallel computation can further improve

the e�ciency of the GBEM. The speedup of our domain decomposition parallel computation
is shown in Figure 4. The speedup of the parallel computation by the global domain, i.e.
without domain decomposed, is also presented in Figure 4. All of our parallel calculations are
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Figure 6. Pro�les of velocity v at y= 1
2 for Re=100, 1000, 5000, and

7500. Solid line: current result; circle: results given by Ghia et al. [30].

implemented on a high-performance parallel computer SGI Onyx 3800. This �gure indicates
that, combining the DDM with the parallel computation, the numerical e�ciency of the GBEM
can be greatly improved.
All of our solutions agree well with those provided by Ghia et al. [30] by means of

the �nite di�erence method. The numerical results of our approach employing the DDM on
96× 96 mesh grid for Re=100 and 1000, and on 120× 120 mesh grid for Re=5000 and
7500, are presented. The velocity pro�les of u at x= 1

2 and v at y= 1
2 , compared with the

results given by Ghia et al. [30], are as shown in Figures 5 and 6, respectively. The contours
of the stream-function are as shown in Figure 7.
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Figure 7. Contour of the stream-function  when Re=100, 1000, 5000, and 7500.

6. CONCLUSION

The GBEM has been successfully applied to many non-linear problems [1–7]. However, like
the traditional BEM for non-linear problems, the domain integral terms appear, and this greatly
decreases the e�ciency of the GBEM. To improve the numerical e�ciency of the GBEM,
Zhao and Liao [7] proposed a kind of parallel computation technique in the GBEM and
obtained, for the �rst time, the solution at Re=7500 for the driven cavity viscous �ow by
the BEM.
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In this paper, domain decomposition method is applied to further improve the numerical
e�ciency of the GBEM. Our calculations demonstrate that the domain decomposition method
is really a good way to improve the e�ciency of the GBEM. Combining the GBEM and
the domain decomposition method, we also get the convergent solutions up to Re=7500
in a personal computer. By a high-performance parallel supercomputer, Zhao and Liao [7]
obtained the solution up to Re=7500 by the GBEM. We show that, by means of the domain
decomposition technique, it is possible to get the convergent solution of the driven cavity
viscous �ow at Re=7500 even by a personal computer.
The comparison between the speedup of the domain decomposition method and the parallel

computation demonstrates that the domain decomposition method is a good alternative to the
parallel computation. If computer hardware is limited, we can apply the DDM to gain nearly
the same e�ciency of the parallel computation.
The domain decomposition method has naturally parallel trends. Our numerical experiments

show that the combination of the domain decomposition method with the parallel computation
can further greatly improve the numerical e�ciency of the GBEM. In this way, the GBEM
might become an e�cient numerical method for strongly non-linear problems in science and
engineering.
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